Age differences were examined in affective processing, in the context of a visual search task. Young and older adults were faster to detect high arousal images compared with low arousal and neutral items. Younger adults were faster to detect positive high arousal targets compared with other categories. In contrast, older adults exhibited an overall detection advantage for emotional images compared with neutral images. Together, these findings suggest that older adults do not display valence-based effects on affective processing at relatively automatic stages.

Keywords: aging, attention, information processing, emotion, visual search
EFFECTS OF AGE ON DETECTION OF EMOTION

Calvo & Lang, 2004; Carretie, Hinojosa, Marin-Loeches, Mecado, & Tapia, 2004; Nummenmaa, Hyona, & Calvo, 2006. An obvious service to evolutionary drives to approach rewarding situations and to avoid threats and danger (Davis & Whalen, 2001; Dolan & Tapia, 2004; Nummenmaa, Hyona, & Calvo, 2006).

For example, Ohman, Flykt, and Esteves (2001) presented participants with 3 × 3 visual arrays with images representing four categories (snakes, spiders, flowers, mushrooms). In half of the arrays, all nine images were from the same category, whereas in the remaining half of the arrays, eight images were from one category and one image was from a different category (e.g., eight flowers and one snake). Participants were asked to indicate whether the matrix included a discrepant stimulus. Results indicated that fear-relevant images were more quickly detected than fear-irrelevant images across the adult life span. The focus of the current research is on determining the extent to which aging influences the early, relatively automatic detection of emotional information.

From this research, it seems clear that younger adults show detection benefits for arousing information in the environment. It is less clear whether these effects are preserved across the adult life span. The focus of the current research is on determining the extent to which aging influences the early, relatively automatic detection of emotional information.

Regions of the brain thought to be important for emotional detection remain relatively intact with aging (reviewed by Chow & Cummings, 2000). Thus, it is plausible that the detection of emotional information remains relatively stable as adults age. However, despite the preservation of emotion-processing regions with age (or perhaps because of the contrast between the preservation of these regions and age-related declines in cognitive-processing regions; Good et al., 2001; Hedden & Gabrieli, 2004; Ohnishi, Matsuda, Tabira, Asada, & Uno, 2001; Raz, 2000; West, 1996), recent behavioral research has revealed changes that occur with aging in the regulation and processing of emotion. According to the socioemotional selectivity theory (Carstensen, 1992), with aging, time is perceived as increasingly limited, and as a result, emotion regulation becomes a primary goal (Carstensen, Isaacowitz, & Charles, 1999). According to socioemotional selectivity theory, age is associated with an increased motivation to derive emotional meaning from life and a simultaneous decreasing motivation to expand one’s knowledge base. As a consequence of these motivational shifts, emotional aspects of the
To maintain positive affect in the face of negative age-related change (e.g., limited time remaining, physical and cognitive decline), older adults may adopt new cognitive strategies. One such strategy, discussed recently, is the positivity effect (Carstensen & Mikels, 2005), in which older adults spend proportionately more time processing positive emotional material and less time processing negative emotional material. Studies examining the influence of emotion on memory (Charles, Mather, & Carstensen, 2003; Kennedy, Mather, & Carstensen, 2004) have found that compared with younger adults, older adults recall proportionally more positive information and proportionally less negative information. Similar results have been found when examining eye-tracking patterns: Older adults looked at positive images longer than younger adults did, even when no age differences were observed in looking time for negative stimuli (Isaacowitz, Wadlinger, Goren, & Wilson, 2006). However, this positivity effect has not gone uncontested; some researchers have found evidence inconsistent with the positivity effect (e.g., Grühn, Smith, & Baltes, 2005; Kensinger, Brierley, Medford, Growdon, & Corkin, 2002).

Based on this previously discussed research, three competing hypotheses exist to explain age differences in emotional processing associated with the normal aging process. First, emotional information may rapidly detect emotional information. We hypothesized that on the whole, older adults would be slower to detect information than young adults would be (consistent with Hahn, Carlson, Singer, & Gronlund, 2006, Mather & Knight, 2006); the critical question was whether the two age groups would show similar or divergent facilitation effects with regard to the effects of emotion on item detection. On the basis of the existing literature, the first two previously discussed hypotheses seemed to be more plausible than the third alternative. This is because there is reason to think that the positivity effect may be operating only at later stages of processing (e.g., strategic, elaboration, and emotion regulation processes) rather than at the earlier stages of processing involved in the rapid detection of information (see Mather & Knight, 2005, for discussion). Thus, the first two hypotheses, that emotional information maintains its importance across the lifespan or that emotional information in general takes on greater importance with age, seemed particularly applicable to early stages of emotional processing.

Indeed, a couple of prior studies have provided evidence for intact early processing of emotional facial expressions with aging. Mather and Knight (2006) examined young and older adults' abilities to detect happy, sad, angry, or neutral faces presented in a complex visual array. Mather and Knight found that like younger adults, older adults detected threatening faces more quickly than they detected other types of emotional stimuli. Similarly, Hahn et al. (2006) also found no age differences in efficiency of search time when angry faces were presented in an array of neutral faces, compared with happy faces in neutral face displays. When angry faces, compared with positive and neutral faces, served as non-target distractors in the visual search arrays, however, older adults were more efficient in searching, compared with younger adults.
negative stimuli were not of equivalent arousal levels (fearful faces typically are more arousing than happy faces; Hansen & Hansen, 1988). Given that arousal is thought to be a key factor in modulating the attentional focus effect (Hansen & Hansen, 1988; Pratto & John, 1991; Reimann & McNally, 1995), to more clearly understand emotional processing in the context of aging, it is necessary to include both positive and negative emotional items with equal levels of arousal.

In the current research, therefore, we compared young and older adults’ detection of four categories of emotional information (positive high arousal, positive low arousal, negative high arousal, and negative low arousal) with their detection of neutral information. The positive and negative stimuli were carefully matched on arousal level, and the categories of high and low arousal were closely matched on valence to assure that the factors of valence (positive, negative) and arousal (high, low) could be investigated independently of one another. Participants were presented with a visual search task including images from these different categories (e.g., snakes, cars, teapots). For half of the multi-image arrays, all of the images were of the same item, and for the remaining half of the arrays, a single different item was included. Participants were asked to decide whether a different item was included, and their reaction times were recorded for each decision. Of primary interest were differences in response times (RTs) between the two age groups. We reasoned that if young and older adults were equally focused on emotional differences in the array, and their reaction times were similar, then we would expect similar degrees of facilitation in the detection of emotional categories. By contrast, if older adults were more affectively focused than young adults (resulting in an interaction between age and arousal), then we would expect similar degrees of facilitation in the detection of emotional information, then we would expect similar degrees of facilitation in the detection of emotional categories.

Materials and Procedure

Younger adults (14 women, 10 men, $M_{age} = 19.5$ years, age range: 18–22 years) were recruited with flyers posted on the Boston College campus. Older adults (15 women, nine men, $M_{age} = 76.1$ years, age range: 68–84 years) were recruited through the Harvard Cooperative on Aging (see Table 1, for demographics and test scores). Participants were compensated $10 per hour for their participation. There were 30 additional participants, recruited in the same way as described above, who provided pilot rating values: five young and five old participants for the assignment of items within individual categories (i.e., images depicting cats), and 10 young and 10 old participants for the assignment of images within valence and arousal categories. All participants were asked to bring corrective eyewear if needed, resulting in normal or corrected to normal vision for all participants.

The visual search task was adapted from Ohman et al. (2001). There were 10 different types of items (two each of five Valence × Arousal categories: positive high arousal, positive low arousal, neutral, negative low arousal, negative high arousal), each containing nine individual exemplars that were used to construct 3×3 stimulus matrices. A total of 90 images were used, each appearing as a target or as a member of a distracting array. A total of 360 matrices were presented to each participant; half contained a target item (i.e., eight items of one type and one target item of another type) and half did not (i.e., all nine images of the same type). Within the
matrix. Within the 180 target trials, each of the five emotion categories (e.g., positive high arousal, neutral, etc.) was represented in 36 trials. Further, within each of the 36 trials for each emotion category, nine trials were created for each of the combinations with the remaining four other emotion categories (e.g., nine trials with eight positive high arousal items and one neutral item). Location of the target was randomly varied such that no target within an emotion category was presented in the same location in arrays of more than one other emotion category (i.e., a negative high arousal target appeared in a different location when presented with positive high arousal array images than when presented with neutral array images).

The items within each category of grayscale images shared the same verbal label (e.g., mushroom, snake), and the items were selected from online databases and photo clipart packages. Each image depicted a photo of the actual object. Ten pilot participants were asked to write down the name corresponding to each object; any object that did not consistently generate the intended response was eliminated from the set. For the remaining images, an additional 20 pilot participants rated the emotional valence and arousal of the objects and assessed the degree of visual similarity among objects within a set (i.e., how similar the mushrooms were to one another) and between objects across sets (i.e., how similar the mushrooms were to the snakes).

Valence and arousal ratings. Valence and arousal were judged on 7-point scales (1 = negative valence or low arousal and 7 = positive valence or high arousal). Negative objects received mean valence ratings of 2.5 or lower, neutral objects received mean valence ratings of 3.5 to 4.5, and positive objects received mean valence ratings of 5.5 or higher. High-arousal objects received mean arousal ratings greater than 5, and low-arousal objects (including all neutral stimuli) received mean arousal ratings of less than 4. We selected categories for which both young and older adults agreed on the valence and arousal classifications, and stimuli were nearly identical within each emotion category (PS > .20). For example, we selected particular mushrooms and particular cats so that the mushrooms were as similar to one another as were the cats (i.e., within-group similarity was held constant across the categories). Our object selection also assured that the categories differed from one another to a similar degree (e.g., that the mushrooms were as similar to the snakes as the cats were similar to the snakes).

Procedure

Each trial began with a white fixation cross presented on a black screen for 1,000 ms; the matrix was then presented, and it remained on the screen until a participant response was recorded. Participants were instructed to respond as quickly as possible with a button marked yes if there was a target present, or a button marked no if no target was present. Response latencies and accuracy for each trial were automatically recorded with E-Prime (Version 1.2) experimental software.
EFFECTS OF AGE ON DETECTION OF EMOTION

Before beginning the actual task, participants performed 20 practice trials to assure compliance with the task instructions.

Analyses focus on participants’ RTs to the 120 trials in which a target was present and was from a different emotional category from the distractor (e.g., RTs were not included for arrays containing eight images of a cat and one image of a butterfly because cats and butterflies are both positive low-arousal items). RTs were analyzed for 24 trials of each target emotion category. RTs for error trials were excluded (less than 5% of all responses) as were RTs that were ±3 SD from each participant’s mean (approximately 1.5% of responses). Median RTs were then calculated for each of the five emotional target categories, collapsing across array type (see Table 2 for raw RT values for each of the two age groups). This allowed us to examine, for example, whether participants were faster to detect images of snakes than images of mushrooms, regardless of the type of array in which they were presented. Because our main interest was in examining the effects of valence and arousal on participants’ target detection times, we created scores for each emotional target category that controlled for the participant’s RTs to detect neutral targets (e.g., subtracting the RT to detect neutral targets from the RT to detect positive high arousal targets). These difference scores were then examined with a 2 × 2 × 2 (Age [young, older] × Valence [positive, negative] × Arousal [high, low]) analysis of variance (ANOVA). This ANOVA revealed only a significant main effect of arousal, F(1, 46) = 8.41, p = .006, η² = .16, with larger differences between neutral and high-arousal images (M = 137) than between neutral and low-arousal images (M = 93; i.e., high-arousal items processed more quickly across both age groups compared with low-arousal items; see Figure 1). There was no significant main effect for valence, nor was there an interaction between valence and arousal. It is critical that the analysis...
EFFECTS OF AGE ON DETECTION OF EMOTION

revealed only a main effect of age but no interactions with age. Thus, the arousal-mediated
effects on detection time appeared stable in young and older adults.

The results described above suggested that there was no influence of age on the
influences of emotion. To further test the validity of this hypothesis, we submitted the RTs to the
five categories of targets to a 2 × 5 (Age [young, old] × Target Category [positive high arousal,
positive low arousal, neutral, negative low arousal, negative high arousal]) repeated-measures
ANOVA. Both the age group, $F(1, 46) = 540.32, p < .001, \eta^2_p = .92,$ and the target category,
$F(4, 184) = 8.98, p < .001, \eta^2_p = .16,$ main effects were significant, as well as the Age Group ×
Target Category interaction, $F(4, 184) = 3.59, p = .008, \eta^2_p = .07.$ This interaction appeared to
reflect the fact that for the younger adults, positive high-arousal targets were detected faster than
targets from all other categories, $t_s(23) < -1.90, p < .001,$ with no other target categories
differing significantly from one another (although there were trends for negative high-arousal
and negative low-arousal targets to be detected more rapidly than neutral targets; $p < .12$). For
older adults, all emotional categories of targets were detected more rapidly than were neutral
targets, $t_s(23) > 2.56, p < .017,$ and RTs to the different emotion categories of targets did not
differ significantly from one another. Thus, these results provided some evidence that older
adults may show a broader advantage for detection of any type of emotional information,
whereas young adults’ benefit may be more narrowly restricted to only certain categories of
emotional information.

Discussion

As outlined previously, there were three plausible alternatives for young and older adults’
performance on the visual search task: The two age groups could show a similar pattern of
enhanced detection of emotional information, older adults could show a greater advantage for
EFFECTS OF AGE ON DETECTION OF EMOTION

emotional detection than young adults, or older adults could show a greater facilitation than young adults only for the detection of positive information. The results lent some support to the first two alternatives, but no evidence was found to support the third alternative.

In line with the first alternative, no effects of age were found when the influence of valence and arousal on target detection times was examined; both age groups showed only an arousal effect. This result is consistent with prior studies that indicated that arousing information can be detected rapidly and automatically by young adults (Anderson, Christoff, Panitz, De Rosa, & Gabrieli, 2003; Ohman & Mineka, 2001) and that older adults, like younger adults, continue to display a threat detection advantage when searching for negative facial targets in arrays of positive and neutral distractors (Hahn et al., 2006; Mather & Knight, 2006). Given the relative preservation of emotion processing systems (LeDoux, 1996; Mather & Bennett, 2004; Jennings, 1995), it makes sense that older adults would remain able to take advantage of the threat detection system.

However, despite this shared detection advantage across age groups, the present results suggest an age-related enhancement for detecting high-arousal images (as opposed to low-arousal images). The pattern of results suggests a broader influence of emotion on older adults’ detection of stimuli, providing support for the hypothesis that as individuals age, emotional information becomes more salient. This pattern of results is consistent with prior research that indicated that arousing information can facilitate detection of positive information (e.g., Anderson, 2005; Calvo & Lang, 2004; Carretie et al., 2004; Juth et al., 2005; Nummenmaa et al., 2006), whereas in other studies, young adults have shown an advantage for negative information (e.g., Armony & Dolan, 2002; Hansen & Hansen, 1998; Mogg, Bradley, de Bono, & Painter, 1997; Pratt & John, 1991; Reimann & McNally, 1995; Williams, Mathews, & MacLeod, 1996)—what is important to note is that the older adults detected both positive and negative stimuli at equal rates. This equivalent detection of positive and negative information provides evidence that older adults display an advantage for the detection of emotional information that is not valence-specific.

Thus, although younger and older adults exhibited somewhat divergent patterns of emotional detection on a task reliant on early, relatively automatic stages of processing, we found no evidence of an age-related positivity effect. The lack of a positivity focus in the older adults is in keeping with the proposal (e.g., Mather & Knight, 2006) that the positivity effect does not arise through automatic attentional influences. Rather, when this effect is observed in older adults, it is likely due to age-related changes in emotion regulation goals that operate at later stages of processing (i.e., during consciously controlled processing), once information has been attended to and once the emotional nature of the stimulus has been discerned.

Although we cannot conclusively say that the current task relies strictly on automatic processes, there are two lines of evidence suggesting that the construct examined in the current
research examines relatively automatic processing. First, in their previous work, Ohman et al. (2001) compared RTs with both 2 × 2 and 3 × 3 arrays. No significant RT differences based on the number of images presented in the arrays were found. Second, in both Ohman et al.’s (2001) study and the present study, analyses were performed to examine the influence of target location on RT. Across both studies, and across both age groups in the current work, emotional targets were detected more quickly than were neutral targets, regardless of their location. Together, these findings suggest that task performance is dependent on relatively automatic detection processes rather than on controlled search processes.

Although further work is required to gain a more complete understanding of the age-related changes in the early processing of emotional information, our findings indicate that young and older adults are similar in their early detection of emotional images. The current study provides further evidence that mechanisms associated with relatively automatic processing of emotional images are well maintained throughout the latter portion of the life span (Fleishman et al., 2004; Jennings & Jacoby, 1993; Leclerc & Hess, 2005). It is critical that, although there is evidence for a positive focus in older adults’ controlled processing of emotional information (e.g., Carstensen & Mikels, 2005; Charles et al., 2003; Mather & Knight, 2005), the present results suggest that the tendency to focus on the positive does not always arise when tasks require relatively automatic and rapid detection of information in the environment.
Figure 2.1. Sample One-Experiment Paper (continued)

EFFECTS OF AGE ON DETECTION OF EMOTION

EFFECTS OF AGE ON DETECTION OF EMOTION

Article with more than seven authors, 7.01, Example 2

EFFECTS OF AGE ON DETECTION OF EMOTION

Footnotes

1Analyses of covariance were conducted with these covariates, with no resulting influences of these variables on the pattern or magnitude of the results.

2These data were also analyzed with a 2 × 5 ANOVA to examine the effect of target category when presented only in arrays containing neutral images, with the results remaining qualitatively the same. More broadly, the effects of emotion on target detection were not qualitatively impacted by the distractor category.
EFFECTS OF AGE ON DETECTION OF EMOTION

Table 1

Participant Characteristics

<table>
<thead>
<tr>
<th>Measure</th>
<th>Younger group</th>
<th>Older group</th>
<th>F(1, 46)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years of education</td>
<td>13.92±1.28</td>
<td>16.33±2.43</td>
<td>18.62</td>
<td><.001</td>
</tr>
<tr>
<td>Beck Anxiety Inventory</td>
<td>9.39±5.34</td>
<td>6.25±6.06</td>
<td>3.54</td>
<td>.066</td>
</tr>
<tr>
<td>STAI–State</td>
<td>45.79±4.44</td>
<td>47.08±3.48</td>
<td>1.07</td>
<td>.306</td>
</tr>
<tr>
<td>STAI–Trait</td>
<td>45.64±4.50</td>
<td>45.58±3.15</td>
<td>0.02</td>
<td>.963</td>
</tr>
<tr>
<td>Digit Symbol Substitution</td>
<td>49.62±7.18</td>
<td>31.58±6.56</td>
<td>77.52</td>
<td><.001</td>
</tr>
<tr>
<td>Generative naming</td>
<td>46.95±9.70</td>
<td>47.17±12.98</td>
<td>.004</td>
<td>.951</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>33.00±3.52</td>
<td>35.25±3.70</td>
<td>4.33</td>
<td>.043</td>
</tr>
<tr>
<td>Digit Span–Backward</td>
<td>8.81±2.09</td>
<td>8.25±2.15</td>
<td>0.78</td>
<td>.383</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>16.14±2.75</td>
<td>14.96±3.11</td>
<td>1.84</td>
<td>.182</td>
</tr>
<tr>
<td>Mental Control</td>
<td>32.32±3.82</td>
<td>23.75±5.13</td>
<td>40.60</td>
<td><.001</td>
</tr>
<tr>
<td>Self-Ordered Pointing</td>
<td>1.73±2.53</td>
<td>9.25±9.40</td>
<td>13.18</td>
<td>.001</td>
</tr>
<tr>
<td>WCST perseverative errors</td>
<td>0.36±0.66</td>
<td>1.83±3.23</td>
<td>4.39</td>
<td>.042</td>
</tr>
</tbody>
</table>

Note. The Beck Anxiety Inventory is from Beck et al. (1988); the Behavioral Assessment of the Dysexecutive Syndrome—Dysexecutive Questionnaire (BADS–DEX) is from Wilson et al. (1996); the State–Trait Anxiety Inventory (STAI) measures are from Spielberger et al. (1970); and the Digit Symbol Substitution, Digit Span–Backward, and Arithmetic Wechsler Adult Intelligence Scale—III and Wechsler Memory Scale—III measures are from Wechsler (1997). Generative naming scores represent the total number of words produced in 60 s each for letter F, A, and S. The Vocabulary measure is from Shipley (1986); the Mental Control measure is from Wechsler (1987); the Self-Ordered Pointing measure was adapted from Petrides and Milner (1982); and the Wisconsin Card Sorting Task (WCST) measure is from Nelson (1976). All values represent raw, nonstandardized scores.
Figure 1. Mean difference values (ms) representing detection speed for each target category subtracted from the mean detection speed for neutral targets. No age differences were found in the arousal-mediated effects on detection speed. Standard errors are represented in the figure by the error bars attached to each column.